God loves trans-species genetic modification of organisms (GMOs) and, in fact, has used it to create some of the most successful and common plants and animals on earth. As Aeon magazine notes:
Scientists have known for many decades that prokaryotes such as bacteria and other microorganisms – which lack a protective nucleus enveloping their DNA – swap genetic material with each other all the time. Researchers have also documented countless cases of viruses shuttling their genes into the genomes of animals, including our own.
What has become increasingly clear in the past 10 years is that this liberal genetic exchange is definitely not limited to the DNA of the microscopic world. It likewise happens to genes that belong to animals, fungi and plants, collectively known as eukaryotes because they boast nuclei in their cells. The ancient communion between ferns and hornworts is the latest in a series of newly discovered examples of horizontal gene transfer: when DNA passes from one organism to another generally unrelated one, rather than moving ‘vertically’ from parent to child. In fact, horizontal gene transfer has happened between all kinds of living things throughout the history of life on the planet – not just between species, but also between different kingdoms of life. Bacterial genes end up in plants; fungal genes wind up in animals; snake and frog genes find their way into cows and bats. It seems that the genome of just about every modern species is something of a mosaic constructed with genes borrowed from many different forms of life…
…. Researchers have now discovered so many examples of gene transfer between species and kingdoms of life – with many more surely to come – that they have to adjust their understanding of how evolution works. Standard evolutionary theory does not account for the possibility of complex organisms suddenly acquiring genes from other species, let alone how those foreign genes might change a creature for better or worse. Think of it this way: if the genomes of living species are flowers on different branches of the great evolutionary tree of life, horizontal gene transfer is a subversive wind whipping pollen from one part of the tree to another….
… In the mid-2000s, Feschotte and his colleagues noticed some unusual patterns among the sequenced genomes of various mammals. Again and again, the lineage of certain DNA segments failed to align with established evolutionary relationships. They would find, for example, nearly identical sequences of DNA in mice and rats, but not in squirrels; and the same sequence would turn up in nocturnal primates known as bushbabies, but not in other primate species. It was highly unlikely that mice, rats and bushbabies had independently evolved the exact same chunk of DNA. Further complicating things, these puckish strings of DNA were not in the same position on the same chromosome in different species, as you would expect if they had been inherited the traditional way – rather, their locations were highly variable…
…. How does one little piece of DNA get into all those distantly related creatures living in such different places – animals that likely never even encountered one another, let alone mated? It probably enlists the help of organisms that have mastered the art of hitchhiking: ticks. …
… Sometimes, parasites transfer far more than a single gene into the genomes of their hosts. Like many insects, the fruit fly species Drosophila ananassae is home to parasitic bacteria known as wolbachia, typically found in an insect’s sex organs. Through a series of gene sequencing studies, scientists have confirmed that the wolbachia species living inside D ananassae has shuttled not just one, but all of its 1,206 genes into the fruit fly’s DNA. Consider this: insects are collectively the most numerous animals on the planet; wolbachia infects between 25 and 70 per cent of all insect species, and it’s probable that wolbachia has successfully completed such genetic mergers in far more than fruit flies. Think of the quintillions of insects in the world – all those buzzing, bristling, bug-eyed creatures. At their very core, most of them might not be individual organisms but at least two beasts in one….
… Shake any branch on the tree of life and another astonishing case of interspecies gene transfer will fall at your feet. Bdelloid rotifers – tiny translucent animals that look something like sea slugs – have constructed a whopping eight per cent of their genome using genes from bacteria, fungi and plants. Fish living in icy seawater have traded genes coding for antifreeze proteins. Gargantuan-blossomed rafflesia have exchanged genes with the plants they parasitise. And in Japan, some people’s gut bacteria have stolen seaweed-digesting genes from ocean bacteria lingering on raw seaweed salads.
GMO is older than written history. |
1 comment:
If Jack Russels had wings...
Post a Comment